
 

 
Abstract 

 
The task of person re-identification (re-id) is to match 

images of people observed in different camera views. 
Recent researches mainly focus on feature representation 
and metric learning. Many global metric learning 
approaches have achieved good performance. Since 
comparing all of the samples with a single global metric is 
inappropriate to handle heterogeneous data, some local 
metric learning approaches are proposed. But most of them 
cannot be used on re-id directly due to some research 
challenges. Also, they usually need complicated 
computation to solve the optimization problems with 
numerous parameters. In order to improve the performance 
of global metric learning and avoid complex computation, 
we propose to simultaneously learn local metrics on 
clusters of samples softly partitioned by Gaussian Mixture 
Model (GMM) and a global metric on the entire training set. 
Then the local metrics are combined with the global metric 
by their posterior probabilities of GMM to obtain an 
integrated metric for similarity evaluation. Experiments on 
three challenging datasets (VIPeR, PRID450S and QMUL 
GRID) verify the effectiveness of the proposed method. 
 

1. Introduction 
Person re-identification (re-id) is an important issue in 

the area of intelligent surveillance. Its target is to match 
snapshots of people observed in non-overlapping camera 
views. A person might show different appearances in 
different views due to variations of illumination, poses, 
viewpoints, background environments and occlusions.  

Recent works mainly focus on feature representation 
[2,3,4,14,15,34] and metric learning [2,5,6,16,17,22,26]. 
Some researchers try to propose feature descriptors which 
are discriminative to distinguish different persons and 
robust against intra-class variations of appearances. Local 
color and texture descriptors are generally used in feature 
representation. Many features achieve good performance, 
such as Ensemble of Local Features (ELF) [14], salience 
match [15], Weighted Histograms of Overlapping Stripes 

(WHOS) [34], Gaussian of Gaussian (GOG) [3], Local 
Maximal Occurrence (LOMO) [2] and an enhanced deep 
feature extracted by Feature Fusion Net (FFN) [4]. 

Metric learning is applied to learn a metric adapted to the 
features of training samples. Its goal is to ensure high 
similarity between intra-class samples and low similarity 
between inter-class samples. PRDC [16] maximizes the 
probability of that intra-class sample pairs have a relatively 
smaller distance than inter-class pairs. KISSME [5] and 
XQDA [2] fit the difference of sample pairs with Gaussian 
models. Then log ratio of the Gaussians is used to obtain a 
distance metric. MLAPG [6] minimize a logistic loss of 
training samples. These global metric learning approaches 
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learn a single metric to measure all of the samples, which 
suffers limitations when handling datasets which vary 
locally.  

Local metric learning [7,17,18,19,20,22] can emphasize 
local differences when comparing different samples. Bohné 
et al. [7] propose Large Margin Local Metric Learning 
(LMLML), which achieves good performance on face 
verification and handwritten digits classification problems. 
Li et al. [17] propose a local metric learning approach for 
re-id by jointly partitioning the training data according to 
the similarity of cross-view transforms. 

Figure 1 shows the comparison of global and local metric 
learning in re-id. Images of re-id dataset usually vary locally 
in some clusters consisting of person images with similar 
clothes and background environments. Global metric is 
learned on the whole training set, which is more 
discriminative than the traditional Euclidean distance. 
However, it might neglect the locally subtle differences of 
similar images. Local metrics learned from local subsets 
focus more on local and individual differences of similar 
samples. Thus, combining global and local metrics might 
achieve better performance on re-id. 

Motivated by the advantages of local and global metric 
learning, we propose a novel approach called Integrated 
Global and Local Metric Learning (IGLML). We utilize the 
idea of local metric learning and combine some recently 
proposed global metric learning methods such as XQDA [2] 
and MLAPG [6]. In the training stage, Gaussian Mixture 
Model (GMM) is used to cluster the training samples. Then 
a strategy for dividing the training set into several local 
subsets with overlaps is used. Local metrics are learned on 
each subset respectively. In the testing stage, for each pair 
of testing samples, the local metrics weighted by the 
GMM’s posterior probabilities of each sample and the 
global metric weighted by a cross-validated parameter are 
summed up to obtain a final integrated metric. In this way, 
we use different metrics to compare different sample pairs. 
The proposed method improves the performance of metric 
learning by emphasizing more on local and individual 
differences. Additionally, local metrics are learned by softly 
integrating some global learning methods, which avoids 
complex computation of solving the optimization problems 
in many existing local metric learning methods. 

The proposed approach is a general framework that 
integrates global and local metrics. It can be used to 
improve many existing global metric learning methods. We 
also realize the proposed framework with different feature 
representations and metric learning approaches. The results 
of experiments on three challenging datasets (VIPeR [1], 
PRID450S [10] and QUML GRID [11]) demonstrate the 
effectiveness of the proposed approach. And the results 
show that our work is generally effective with both different 
features and metric learning methods. 

2. Related works 
Metric learning plays an important role in re-id because it 

can obviously improve the performance even if the feature 
descriptors are not discriminative enough. Its goal is to learn 
a metric which ensures that intra-class samples have higher 
similarity than inter-class samples. Global metric learning 
approaches [2,5,6,16,26] learn a single metric to measure 
all of the samples, while local metric learning approaches 
[7,17,18,19,20,22] learn series of local metrics which are 
combined into an adaptive distance function when 
comparing different samples. Next, we review some global 
and local metric learning approaches. 

2.1. Global metric learning 
Many global metric learning approaches have been 

proposed to solve re-id problems. The Mahalanobis 
distance is a generally used linear metric. For two samples, 

ix  and jx , the metric is defined as � � � �T
� �i j i jx x M x x , 

where M is called metric matrix. XQDA [2] and MLAPG [6] 
are global metric learning approaches recently proposed. 

XQDA: Cross-view Quadratic Discriminant Analysis 
(XQDA) [2] is proposed based on Keep It Simple and 
Straightforward Metric (KISSME) [5] and Bayesian Face [9] 
approaches. Gaussian model is used to fit the distributions 
of differences between intra-class and inter-class samples 
respectively. The Mahalanobis metric is derived by the 
log-likelihood ratio of the two Gaussians. For two samples, 

ix and jx , the derived distance function is 

� � � � � �� �T2 1 1, I Ed � �� � � �i j i j i jx x x x x xΣ Σ        (1) 

where IΣ  and EΣ  are covariance matrixes of differences 
between intra-class and inter-class sample pairs respectively. 
XQDA learns a discriminant low dimensional subspace and 
a metric simultaneously. It reduces the dimensions of 
features considering the influence of dimension reduction 
on metric learning. For the original features, , Rd�i jx x , 

XQDA learns  a matrix 
  R ( )d d d d�� �
' 'W  to map the 

features to a lower dimensional subspace. Considering the 
mapping matrix W, the distance function is defined as  

� � � � � � � �T2 ' 1 ' 1 T, I Ed � �� � � �W i j i j i jx x x x W W x xΣ Σ  (2) 

where T�'
I IΣ W Σ W  and T�'

E EΣ W Σ W . 

MLAPG: MLAPG [6] learns a metric by minimizing a log 
logistic loss function on the entire training set,  

� � � � 
1 1

,
n m

i j
i j

F w f
� �

�		 M i jM x x                    (3) 

where � �,fM i jx x  is the log logistic loss of the sample pair 
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� �,i jx x , n and m are the total numbers of samples from two 

camera views,  i jw  is used to balance the loss of inter-class 
and intra-class sample pairs. If ix  and jx  are in the same 
class, they are positive pair and  1/i jw N
� , otherwise, 

 1/i jw N�� , where N
 and N� are the total number of 
positive and negative sample pairs in the training set. 

The optimization problem is described as 
min  ( )    s.t. F M M =0                     (4) 

where  M =0 means that M is a positive semi-definite 
(PSD) matrix. The accelerated proximal gradient (APG) [28] 
approach is used to solve the equation (4).  

2.2. Local metric learning 
Many local metric learning approaches are proposed to 

obtain more flexible metrics in order to handle datasets with 
complex distributions. They usually learn different metrics 
on clusters of training data. These approaches achieve good 
performance on object classification and face recognition 
problems mainly. However, many existing local metric 
learning methods are not suitable to be used on re-id directly 
due to the following challenges: (1) Only few samples in 
each class of a person. Especially, there are only two 
samples for a person in the single-shot case of re-id. (2)  
Persons’ ids in testing stage are never been seen in training 
stage. (3) Larger intra-class variations than classification 
and face recognition problems. (4) High-dimensional 
features to ensure the discriminative power.  

LMLML [7] computes a set of local metrics by 
optimizing a convex problem which favors a large margin 
solution. When measuring the similarity of two samples, the 
learned local metrics are combined according to the softly 
partitioning of training data. LMLML achieves good 
performance on various datasets including handwritten 
digits and face verifications et al. However, it needs a 
complex procedure of solving convex optimization 
problems to get local metrics. The number of parameters is 
related to the dimensions of features. Due to the above 
challenge (4) of re-id, when processing high-dimensional 
features, it’s difficult to solve the optimization problems. 
Additionally, Bohné et al. [7] mention that LMLML has 
limits on the datasets with wide intra-class variations. On 
account of the challenge (3), samples of the same person in 
re-id dataset might be partitioned into different local sets. It 
makes difficulties for localized learning. 

Cluster-based Adaptive Metric (CLAM) [20] performs 
well on object classification problems. An iterative 
hierarchical clustering method is used on each class of the 
training data. Then each cluster is regarded as a separate 
class and modeled by a Gaussian distribution. The 
classification result is determined by the sum of Bayesian 
posterior probabilities of the clusters in each class. However, 

it’s unrealistic to cluster data of each class of a person for 
re-id due to the above challenge (1) and (2).  

Coordinated Local Metric Learning (CLML) [18] use 
GMM to obtain soft-partitioning of the data. The feature ix  
is multiplied by ( | )p k ix , which is the posterior probability 
of ix  assigning to cluster k, and it forms a high-dimensional 

feature � �TT T(1| )( ,1),..., ( | )( ,1)p p K�'
i i i i ix x x x x , where K 

is the number of clusters. Then the existing global metric 
learning methods can be used on the new feature to obtain a 
metric. New feature '

ix  owns K times of dimensions than 
the original feature ix .  As mentioned in the challenge (4), 
many existing global metric learning methods have limits 
when facing the extremely high-dimensional features. 

Li et al. [17] divides the images of different views 
according to the similarity of cross-view transforms. And 
classifiers are learned locally on each divided set. Samples 
with similar transforms are projected to a common feature 
space and combined softly for matching. Instance Specific 
Distance (ISD) [24] even learns a different classifier for 
each training sample by metric propagation strategy.  

Local metric learning approaches can adapt to the local 
characteristics of data. However, most of the existing local 
learning approaches cannot be used on re-id directly due to 
the four challenges mentioned above. We propose a novel 
framework of integrating global metric learning methods 
with the idea of localized learning. The performance of 
many existing metric learning approaches can be improved 
with the proposed framework, since it not only takes 
advantages of metric learning, but also focuses more on 
local and individual differences by integrating local metrics.  

3. Integrated global-local metric learning 
Motivated by the advantages of existing global metric 

learning approaches and the idea of local learning, we 
propose to integrate global and local metrics to obtain better 
performance. The local metrics are learned on each cluster 
softly partitioned by GMM [26], and the global metric is 
learned on the whole training set. Then the global and local 
metrics are combined adapted to individual and local 
characteristics when measuring similarity of sample pairs. 
We call the proposed framework as IGLML. 

3.1. Model  
Figure 2 and 3 show the training and testing procedures 

of the proposed approach respectively. In the training stage, 
the training data is clustered by GMM with K components. 
Then for each cluster, a metric is learned separately. Thus, a 
series of local metrics, ( 1,2,..., )k K�kM , are obtained. 
Meanwhile, the global metric matrix 0M is learned from all 
of the training samples. 
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In the testing stage, we use the weighted sum of local and 
global metrics to compare sample pairs. The weight of each 
local metric is given by the samples’ posterior probabilities 
aligning to the k-th GMM component. And the weight of the 
global metric 0M  is given by cross-validation. 

3.2. Local metric training 
GMM is composed by multiple components of Gaussian 

distributions. It can be used for clustering and fitting 
complex distributions. A sample belonging to which cluster 
is determined by its posterior probabilities of each Gaussian 
component. GMM can be used to partition samples softly. 

In the training stage, GMM with K components is used to 
fit the distribution of the entire training set. The training set 
is partitioned into several local subsets according to the 
posterior probability of each sample’s alignment to each 
Gaussian component. Then metric learning approach is 
used on each local training set separately. Thus, a set of 
local metrics, ( 1,2,..., )k K�kM , are obtained in this way. 

Due to the greatly different appearances of the same 
person in different camera views, images with the same 
label might belong to different clusters of GMM. In order to 
ensure enough samples for training in each local training set 

to avoid over-fitting, if a sample ix  belongs to the k-th 
cluster, samples having the same label with ix  are assigned 
to the same local training set. Thus, local metrics are 
training on overlapping local subsets. As Figure 4 shows, a 
pair of samples, ix and jx , own the same label. According 
to the maximum posterior probability of GMM components, 

ix  is assigned to the ik  component corresponding to 
“Local set 1”, while jx  is assigned to another component 

jk ( i jk k� ) corresponding to “Local set 3”. In this situation, 
both ix  and jx  are partitioned to both “Local set 1” and 
the “Local set 3” for local training simultaneously. 

Features’ dimensions for GMM unsupervised learning 
shouldn’t be too large because the number of parameters in 
GMM is positively related to the features’ dimensions. 
Estimating too many parameters would be prohibitive on 
account of the limited number of training samples for re-id. 
Moreover, the features’ dimensions need to be reduced in 
order to ensure the smoothness of posterior probabilities of 
Gaussian components. Therefore, Principal Component 
Analysis (PCA) [21] is used to reduce the dimensions 
before clustering with GMM. The features don’t need to be 
very discriminative because GMM is used in a very primary 
stage before metric learning. Reduction of dimensions has 
little negative effects on the final matching results.  

3.3. Integrated global and local metric 
In global metric learning approaches, Mahalanobis 

distance of a sample pair, ix  and jx , is defined as 

� � � � � �T2 , ,d � � �i j i j i jx x M x x M x x            (5) 

In this work, we replace metric matrix M with a function of 
integrated global and local metrics, ( , )i jx x , which is 
defined as 

Figure 3: Testing procedure of Integrated Global-Local Metric 
Learning (IGLML) method. Local metrics are weighted by 
samples’ posterior probabilities of Gaussian components. Local 
and global metrics are integrated as the final metric. 
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Figure 2: Training procedure of Integrated Global-Local Metric 
Learning (IGLML) method. Local metrics are learned on clusters 
of GMM. Global metric is learned on the entire training set. 
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same time. 
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� �1
( , ) ,K

0 kk
� �

�
� 
	i j i j0 kMx x x xM          (6) 

where 0M  is a global metric matrix learned on the entire 
training set. And ( 1,2,..., )k K�kM  are a series of local 
metrics learned from each local training dataset. Their 
weights ( 1,2,..., )k k K� �  are defined as 

� � � � � �, | |k p k p k� � 
i j i jx x x x                  (7) 

where � �|p k ix  is the posterior probability of that sample 

ix  is generated by the k-th component of GMM. Notice that 

� �
1

2,k

K

k
�

�

�	 i jx x . kM  is a local metric learned on the k-th 

cluster of GMM, which have a greater effect in ( , )i jx x  
if ix  or jx  is more strongly associated with  k-th Gaussian 
component, and the effect is even greater if both ix and jx  
are more likely generated by the k-th component.  

GMM tends to roughly partition images of persons with 
similar background environments or clothes into a local 
training set. Thus, when learning a local metric separately 
on each cluster, it will emphasize the local differences 
which are more discriminative between similar samples in 
the same local training set. And the local metrics  

( 1,2,..., )k K�kM  are combined into an adaptive metric for 
the final similarity computation. Theoretically, when the 
number of Gaussian components K is larger, the model is 
more able to learn a metric adapted to subtle local 
differences, but it’s easier to be over-fitting. So the 
parameter K needs to be adjusted by cross-validation. 

0M  is the global metric learned from the entire training 
dataset. 0�  is a weight for balancing the influence of local 
and global metrics in the final integrated metric. If 00� � , 
the global metric has no effect on the integrated metric. The 
experimental results in section 4.3 show that purely local 
metric learning performs a little better than or equally to the 
corresponding global approach when 00� � . And the 
accuracy achieves a further improvement by adjusting the 
weight of the global metric 0� . 

3.4. Local metric learning for MLAPG 
As described in the related work in section 2.1, we notice 

that MLAPG [6] use an asymmetric sample weighting 
strategy. In the equation (3),  i jw  is the weight of the loss of 

a sample pair � �,i jx x . It motivates us to improve MLAPG 
with local metric learning idea further more. 

Considering learning a local metric kM  on the local 
training set k, we replace the weight  i jw  with  

k
i jw , which is 

defined as 

� � � �� �  | |k
i j i j pw kw p k
� i jx x                    (8) 

where � �|p k ix  is the posterior probability of that 
sample ix  is generated by the k-th component in GMM. 
And the same as the equation (3), if ix  and jx  are in the 
same class,  1/i jw N
� , otherwise,  1/i jw N�� . Thus, a 
local metric is learned by minimizing equation (9) with the 
PSD constrain of kM . 

� � � � 
1 1

,
n m

k
k i j

i j
F w f

� �

�		 kk M i jM x x                     (9) 

The same as the equation (3), � �,f
kM i jx x  represents the 

log logistic loss of a sample pair, ix  and jx . A set of local 
metrics, ( 1,2,..., )k K�kM , are obtained by minimizing the 
equation (9) with the APG approach [28]. Then local and 
global metric matrixes are combined as described in the 
equation (6) when evaluating the similarity between testing 
samples. Specially, we call this approach as Local metric 
learning for MLAPG (L-MLAPG). 

4. Experiments  
We conduct experiments on three challenging datasets 

(VIPeR [1], PRID450S [10] and QUML GRID [11]) to 
evaluate the proposed approaches from both metric learning 
and feature representation perspectives. Different kinds of 
global metric learning methods and feature descriptors are 
used to demonstrate the effectiveness of the proposed 
framework of IGLML. Additionally, experiments of the 
L-MLAPG method also show more potentials. 

4.1. Datasets and experiment protocols 
The Cumulative Matching Characteristic (CMC) curve 

and the Rank-1 accuracy [12] are most widely used 
evaluation criterions of re-id. The CMC curve reflects the 
probabilities of finding the exact matched results in the first 
r ranks. When r=1, it corresponds to Rank-1 accuracy, 
which represents the percentage of right matched query 
samples in the testing set. 

We validate the proposed approaches on VIPeR [1], 
PRID450S [10] and QMUL GRID [11] datasets. These 
datasets contain images of people in non-overlapping 
camera views. In each time of experiments, we randomly 
divide the dataset into two parts, half of which are used for 
training and the other half are used for testing. The 
experiment is repeated for 10 times, and the average 
performance is obtained. 

Generally, images from one view consist of the gallery set, 
and ones from the other view consist of the probe set. The 
task of re-id is to find matched results from the gallery set 
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for the given query images from the probe set. We utilized 
the single-shot setting in our experiments. 

4.2. Evaluations of metric learning approaches 
The proposed IGLML can be used to improve the 

performances of many existing metric learning approaches. 
In the experiments, different global metric learning methods 
such as XQDA [2] and MLAPG [6] are integrated into the 
proposed framework to validate the wide effectiveness of 
IGLML with different global metric learning methods. 
LOMO [2] feature is used in the experiments.  

4.2.1 Experiments on VIPeR 

VIPeR [1] is one of the most widely used dataset in re-id. 
It contains 632 pairs of images from two cameras. The 
unified size of these images are scaled to 128 48 pixels. 
We randomly select 316 pairs for training and the other 316 
pairs for testing. The experiment is repeated for 10 times to 
get an average performance. 

 Table 1 shows the accuracy of Rank-1, 10, 20 of the 
proposed approaches comparing to the corresponding 
global metric learning methods on VIPeR. The Rank-1 
accuracy of IGLML based on XQDA is 41.99%, which 
raises the performance by 1.99% comparing to XQDA [2]. 
And the Rank-1 accuracy of IGLML based on MLAPG is 
42.47%, which is 1.74% higher than that of MLAPG [6].  

The parameters of the proposed IGLML method are 
selected by empirical evaluation. The experimental results 
show that our work achieves better performance than global 
metric learning approaches in various degrees when the 
numbers of GMM components (K) and PCA components 
(D) are in the scopes of [2,10] and [10,50] or larger scopes, 
respectively. For the results of VIPeR in Table 1, the 
number of GMM components, K =4, the reduced feature 
dimension after PCA, D =27, and the weight of global 
metric matrix in the equation (6), 20� � . 

4.2.2 Experiments on PRID450S 

PRID450S [10] contains 450 pairs of images in two 
camera views. The size of each image is not unified. In 
order to extract LOMO features [2], we resize the images 
into 128 64 pixels. And we use the code provided by [2] to 
compute LOMO features which are 26,960 dimensions. 

Then XQDA, MLAPG and IGLML based on them are 
realized with the extracted LOMO features. 

The middle columns of Table 1 show the accuracy of 
Rank-1, 10, 20 of the related approaches. The Rank-1 
accuracy is improved by 1.02% comparing to XQDA which 
arrives at 60.62% and 0.97% comparing to MLAPG.  

Since the number of samples in PRID450S is less than 
VIPeR dataset, the parameters of GMM components might 
be lower. For the results of PRID450S shown in Table 1, the 
parameters are set as following: K =3, D =30, 20� � . 

4.2.3 Experiments on QMUL GRID 

The QMUL underGround Re-identification (GRID) 
dataset [11] contains 250 image pairs of persons captured 
form cameras in an underground station. Additionally, there 
are 775 images of persons who are not in the 250 pairs. We 
randomly select 125 pairs of images for training. The other 
125 pairs and the 775 non-labeled images construct the 
testing set. The experiment is repeated for 10 times to obtain 
average performance.  

Since the number of training samples is very limited in 
the GRID dataset. When we use GMM clustering and the 
partitioning strategy described in Section 3.2, there will be 
only a few samples in each local subset. However, IGLML 
needs both enough GMM components to learn different 
local characteristics adequately and enough training 
samples in each subset to avoid over-fitting for localized 
learning. Thus, features’ dimensions after PCA might be 
lower and each element value in the covariance matrixes of 
GMM components are enlarged 10 times to obtain smoother 
posterior probabilities considering of the matrix inversion 
operator. Then if a sample’s posterior probability of the k-th 
component is larger than 0.01, the sample will be 
partitioned into the local subsets corresponding to the k-th 
component. These skills make lager overlapping between 
subsets to ensure both enough GMM components and 
training samples in each subset. 

The columns on the right of Table 1 show Rank-1, 10, 20 
accuracy of IGLML comparing to the corresponding global 
learning methods. We replicated the experiments by the 
source codes provided by [2] and [6]. The proposed 
approach is realized with the same experiment setting with 
XQDA and MLAPG in our experiments. As Table 1 shows, 
IGLML approaches improve the performance a little. 

Table 1: Comparison of the proposed IGLML and global metric learning approaches with LOMO features [2] on different datasets. 

Methods VIPeR [1] PRID450S [10] QMUL GRID [11] 
Rank-1 Rank-10 Rank-20 Rank-1 Rank-10 Rank-20 Rank-1 Rank-10 Rank-20 

IGLML-XQDA 41.99 82.50 92.25 60.62 89.82 94.62 18.80 44.08 55.52 
XQDA [2] 40.00 80.51 91.08 59.60 89.60 93.91 18.32 44.08 55.44 

IGLML-MLAPG 42.47 83.45 93.29 59.73 90.44 95.56 18.08 43.44 55.92 
MLAPG [6] 40.73 82.34 92.37 58.76 90.31 95.33 17.68 43.28 55.28 
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Parameters for the results of IGLML based on XQDA are 
set as K =4, D =16, 0 2� � . And IGLML based on MLAPG 
shares the parameters as K =5, D =12, 0 2� � . 

4.2.4 Analysis of results and parameters 

The experimental results show that the proposed IGLML 
approach is especially suitable for datasets with complex 
variations of backgrounds or clothes. IGLML performs 
better than the global metric learning approaches on the 
challenging VIPeR and PRID450S datasets. For GRID 
dataset, the proposed methods improve the performance a 
little, which is not as obviously as the other two datasets. 
The main reason is that comparing to VIPeR and PRID450S, 
person snapshot images in GRID share similar background 
environments in an underground station. In IGLML, GMM 
is used to divide the training set before localized learning. It 
assigns images with similar backgrounds or clothes to the 
same local set. However, it’s difficult to partition images in 
GRID with all similar appearances. From the experimental 
results, we conclude that the proposed IGLML is better at 
processing more challenging re-id tasks with complicated 
variations of backgrounds or clothes in a camera view. 

The parameters of the dimensions after PCA reduction 
(D), component number of GMM (K), and the weight of 
global metric ( )0�  are selected by cross-validation. We 
analyze the influence of varying K in section 3.3. And 
experimental results show that D has less influence on the 
accuracy than K. IGLML performs well when D varying in 
the range of [20, 50] or a larger range on VIPeR and 
PRID450S datasets. 

4.3. Evaluations of local metric learning 
We also analyze the performance of purely local metric 

learning, which means 00� �  in the equation (6). We 
conduct experiments of L-MLAPG and local metric 
learning based on XQDA and MLAPG appoaches on 
VIPeR dataset with LOMO feature [2]. Local metrics are 
learned with the same parameters, where D=41, K =5.  

Table 2 shows the accuracy of the related methods. It can 
be seen that L-MLAPG performs better than other local 
metric learning methods. IGLML doesn’t perform as well as 
global methods in [2] and [6] when 00� � . Local metrics 
in IGLML are learned on only a part of the training set. The 
generalization ability of the models is not as strong as that 
learned from the entire training set. However, L-MLAPG 
learns local metrics on all of the training samples by 
adapting the weights of loss functions. It achieves the 
Rank-1 accuracy of 41.39%, which is higher than that of 
MLAPG [6] and other local metric learning approaches. If 
introducing global metric into the integrated metric by 
adjusting 0� in L-MLAPG, it will perform much better. 

4.4. Evaluations of feature representations 
We also conduct experiments with different features to 

verify the generalized effectiveness of IGLML. LOMO [2], 
GOG [3], an enhanced deep feature extracted by FFN [4] 
and WHOS [34] features are used in the experiments.  

4.4.1 Feature representations 

LOMO [2] feature is robust against illumination and 
viewpoints variations. Multi-scale Retinex transformation 
[13] is used to preprocess the images in order to overcome 
the color distortion caused by illumination. Then it extracts 
features by a set of sliding windows on the images.  Color 
and texture histograms are computed in each sliding 
window. Then it computes the maximal value of each bin in 
the histograms among sub-windows at the same horizontal 
location to handle the change of viewpoints.  

GOG [3] is a regional descriptor based on a hierarchical 
distribution of pixel features. Location, gradient and color 
features are extracted inside a local patch. And a Gaussian 
distribution of pixel features represents the appearance of a 
local patch. Then the characteristics of the patches in a lager 
region are described by another Gaussian distribution. We 
use GOG descriptor in RGB space in the experiments. 

Table 2: Comparison of purely local metric learning of IGLML 
and L-MLAPG on VIPeR dataset [1] with LOMO features [2]. 

Methods Rank-1 Rank-10 Rank-20 
L-MLAPG 41.39 83.13 93.39 

IGLML-MLAPG( 0 0� � ) 40.16 81.84 91.65 
IGLML-XQDA( 0 0� � ) 37.78 79.30 90.13 

MLAPG [6] 40.73 82.34 92.37 
XQDA [2] 40.00 80.51 91.08 

Table 3: The performance of IGLML based on XQDA with 
different features on VIPeR  dataset [1]. 

Methods r=1 r =10 r =20 
LOMO[2]+IGLML 41.99 82.50 92.25 

LOMO[2]+XQDA[2] 40.00 80.51 91.08 
FFN(original)[4]+ IGLML 31.58 71.80 83.99 

FFN(original) [4]+XQDA [2] 28.86 68.13 81.14 
FFN(normalized) [4]+ IGLML 32.59 73.86 86.49 

FFN(normalized) [4]+XQDA [2] 30.13 72.75 85.73 
GOG(original) [3]+ IGLML 42.15 83.67 91.90 

GOG(original) [3]+XQDA[2] 38.77 81.30 91.36 
GOG(normalized) [3]+ IGLML 43.89 85.16 93.64 

GOG(normalized) [3]+XQDA[2] 42.53 84.40 92.97 
WHOS(original)[34]+IGLML 40.19 82.06 90.89 

WHOS(original)[34]+XQDA[2] 33.39 74.62 85.82 
WHOS(normalized)[34]+IGLML 42.91 84.65 93.07 

WHOS(normalized)[34]+XQDA[2] 41.61 82.72 92.82 
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Enhanced deep feature extracted by FFN [4] combines 
hand-crafted and CNN features [29] effectively. It jointly 
maps ELF16 [8] and CNN features to a unitary space. The 
parameters of the CNN net are influenced by hand-crafted 
features by back propagation.  

WHOS [34] splits the image into several overlapping 
horizontal stripes. Weighted histograms in HSV, RGB and 
Lab color spaces are extracted. The weight of each pixel in 
the histogram bins is computed by a non-isotropic Gaussian 
kernel centered in the image to decrease the influence of 
background information. In addition, texture descriptors 
such as LBP and HOG are also extracted. All of the color 
and texture histograms are concatenated to obtain a more 
discriminative feature representation. 

4.4.2 Experiments with different features 

LOMO features are already normalized, which can be 
used directly, but GOG, FNN and WHOS features are not 
normalized. Actually, for high-dimensional features, 
normalization is important to improve the performance [23]. 
We do experiments on both original and normalized feature 
to observe the improvements of IGLML. We used L2 norm 
as described in [3] to normalize the features. 

Table 3 shows the performance of IGLML based on 
XQDA comparing to XQDA with different feature 
representations. For GOG, FFN and WHOS, the results of 
both original non-normalized and normalized features are 
shown. It can be seen that IGLML can improve the 

performance of global metric learning no matter what 
features are used. And the proposed approach can improve 
the performance more greatly with non-normalized features. 
IGLML performs better than global learning methods using 
both features with background influence decrease and 
features containing background information. It means the 
proposed approaches don’t depend on background. 

4.5. Comparison with state-of-the-art results 
We compare the results of the proposed approaches with 

state-of-the-art methods. The proposed models are based on 
LOMO feature. Table 4 and 5 summarize the performance 
of some recently proposed models on VIPeR and 
PRID450S datasets respectively. It shows that the proposed 
L-MLAPG and IGLML approaches with LOMO features 
perform better than other listed methods generally. IGLML 
based on MLAPG owns the highest Rank-1 accuracy of 
42.47% on VIPeR among the methods in Table 4. IGLML 
based on XQDA achieves Rank-1 accuracy of 60.62% on 
PRID450S, which is the highest in Table 5. And L-MLAPG 
performs better on other ranks. 

5. Conclusion  
We propose a flexible framework of Integrated Global- 

Local Metric Learning (IGLML). The proposed framework 
can generally improve the performance of global metric 
learning approaches regardless of using what feature 
representation or metric learning methods. And it’s 
especially suitable for handling heterogeneous datasets with 
complex variations of backgrounds or clothes in a camera 
view. In this paper, we integrate some simple but effective 
global metric learning methods by softly dividing the 
training set with GMM and a proposed strategy of softly 
partitioning overlapping subsets. Specially, we also propose 
a more effective local learning approach for MLAPG 
(L-MLAPG) by modifying the weights of sample pairs’ loss 
with posterior probabilities of GMM components. Actually, 
except for XQDA and MLAPG, other global metric 
learning methods can also be integrated into the proposed 
framework and achieve better performance. The proposed 
approaches avoid complicated procedure of solving 
optimization problems in other local metric learning 
methods and effectively improve the performance on person 
re-identification issue. The experiments on the three 
challenging datasets verify the generalized effectiveness of 
the proposed approaches. 
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Table 4: Comparison of state-of-the-art results on VIPeR [1].  

Method r=1 r =10 r =20 

Proposed 
IGLML-MLAPG 42.47 83.45 93.29 

L-MLAPG 41.39 83.13 93.39 
IGLML-XQDA 41.99 82.50 92.25 

State-of- 
the-art 

MLAPG[6] 40.73 82.34 92.37 
XQDA[2] 40.00 80.51 91.08 

KEPLER [30] 42.41 82.37 90.70 
RMLLC [31] 31.27 75.31 86.71 
SCNCD [33] 37.80 81.20 90.40 
KCCA [26] 37.00 85.00 93.00 
LFDA [32] 24.18 67.12 78.96 

KISSME [5] 19.60 62.20 77.00 

Table 5: Comparison of state-of-the-art results on PRID450S [10]. 

Method r=1 r =10 r =20 
Proposed IGLML-MLAPG 59.73 90.44 95.56 

L-MLAPG 59.56 90.62 95.96 
IGLML-XQDA 60.62 89.82 94.62 

State-of- 
the-art 

MLAPG[6] 58.76 90.31 95.33 
XQDA[2] 59.60 89.60 93.91 

Mirror KMFA [8] 55.42 87.82 93.87 
LFDA [32] 36.18 72.40 82.67 

KISSME [5] 36.31 75.42 83.69 
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